How to Derive the Speed of Light from Maxwell's Equations
Begin with Maxwell's Equations in vacuum., Take the curl of both sides of Faraday's Law., Substitute the Ampere-Maxwell Law., Rewrite the wave equation in one dimension., Twice differentiate the solution with respect to x{\displaystyle x} and...
Step-by-Step Guide
-
Step 1: Begin with Maxwell's Equations in vacuum.
In vacuum, charge density ρ=0{\displaystyle \rho =0} and current density J=0.{\displaystyle {\mathbf {J} }=0.} ∇⋅E=0∇⋅B=0∇×E=−∂B∂t∇×B=μ0ϵ0∂E∂t{\displaystyle {\begin{aligned}\nabla \cdot {\mathbf {E} }&=0\\\nabla \cdot {\mathbf {B} }&=0\\\nabla \times {\mathbf {E} }&=-{\frac {\partial {\mathbf {B} }}{\partial t}}\\\nabla \times {\mathbf {B} }&=\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E} }}{\partial t}}\end{aligned}}} where μ0{\displaystyle \mu _{0}} is the magnetic permeability constant and ϵ0{\displaystyle \epsilon _{0}} is the electric permittivity constant.
The intertwining between the electric and magnetic fields is on full display here. -
Step 2: Take the curl of both sides of Faraday's Law.
∇×(∇×E)=∇×−∂B∂t=−∂∂t(∇×B){\displaystyle {\begin{aligned}\nabla \times (\nabla \times {\mathbf {E} })&=\nabla \times
-{\frac {\partial {\mathbf {B} }}{\partial t}}\\&=-{\frac {\partial }{\partial t}}(\nabla \times {\mathbf {B} })\end{aligned}}} Note that partial derivatives commute with each other, given well-behaved functions. , Using the BAC-CAB identity ∇×(∇×E)=∇(∇⋅E)−∇2E{\displaystyle \nabla \times (\nabla \times {\mathbf {E} })=\nabla (\nabla \cdot {\mathbf {E} })-\nabla ^{2}{\mathbf {E} }} on the left side and recognizing that ∇⋅E=0,{\displaystyle \nabla \cdot {\mathbf {E} }=0,} ∇(∇⋅E)−∇2E=−μ0ϵ0∂2E∂t2∇2E=μ0ϵ0∂2E∂t2.{\displaystyle {\begin{aligned}\nabla (\nabla \cdot {\mathbf {E} })-\nabla ^{2}{\mathbf {E} }&=-\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {E} }}{\partial t^{2}}}\\\nabla ^{2}{\mathbf {E} }&=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {E} }}{\partial t^{2}}}.\end{aligned}}} The above equation is the wave equation in three dimensions. , ∂2E∂x2=μ0ϵ0∂2E∂t2.{\displaystyle {\frac {\partial ^{2}E}{\partial x^{2}}}=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}E}{\partial t^{2}}}.} The general solution to this equation is f(x−vt)+g(x+vt),{\displaystyle f(x-vt)+g(x+vt),} where v{\displaystyle v} is the velocity and λ{\displaystyle \lambda } is the wavelength.
Here, f{\displaystyle f} and g{\displaystyle g} are two arbitrary functions that describe a wave propagating in the positive and negative directions, respectively.
Since this is quite general, we can opt for the most common solution of just a sinusoidal function traveling in the direction of propagation.
So we can write the solution as E=E0sin(2πλ(x−vt)),{\displaystyle E=E_{0}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right),} where E0{\displaystyle E_{0}} is the amplitude of the electric field (this quantity will cancel out later). , ∂2E∂x2=−E0(2πλ)2sin(2πλ(x−vt))∂2E∂t2=−E0(2πvλ)2sin(2πλ(x−vt)){\displaystyle {\begin{aligned}{\frac {\partial ^{2}E}{\partial x^{2}}}&=-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\\{\frac {\partial ^{2}E}{\partial t^{2}}}&=-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\end{aligned}}} , Note that the sin{\displaystyle \sin } expressions cancel out. −E0(2πλ)2=μ0ϵ01=μ0ϵ0v2{\displaystyle {\begin{aligned}-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}&=\mu _{0}\epsilon _{0}\left\\1&=\mu _{0}\epsilon _{0}v^{2}\end{aligned}}} , v=1μ0ϵ0≈3×108 m s−1.{\displaystyle v={\sqrt {\frac {1}{\mu _{0}\epsilon _{0}}}}\approx 3\times 10^{8}{\text{ m s}}^{-1}.} The expression on the right happens to equal the speed of light.
Therefore, light does not only travel at the speed of electromagnetic waves, it is an electromagnetic wave. -
Step 3: Substitute the Ampere-Maxwell Law.
-
Step 4: Rewrite the wave equation in one dimension.
-
Step 5: Twice differentiate the solution with respect to x{\displaystyle x} and t{\displaystyle t}.
-
Step 6: Substitute these equations back into the wave equation.
-
Step 7: Arrive at the answer.
Detailed Guide
In vacuum, charge density ρ=0{\displaystyle \rho =0} and current density J=0.{\displaystyle {\mathbf {J} }=0.} ∇⋅E=0∇⋅B=0∇×E=−∂B∂t∇×B=μ0ϵ0∂E∂t{\displaystyle {\begin{aligned}\nabla \cdot {\mathbf {E} }&=0\\\nabla \cdot {\mathbf {B} }&=0\\\nabla \times {\mathbf {E} }&=-{\frac {\partial {\mathbf {B} }}{\partial t}}\\\nabla \times {\mathbf {B} }&=\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E} }}{\partial t}}\end{aligned}}} where μ0{\displaystyle \mu _{0}} is the magnetic permeability constant and ϵ0{\displaystyle \epsilon _{0}} is the electric permittivity constant.
The intertwining between the electric and magnetic fields is on full display here.
∇×(∇×E)=∇×−∂B∂t=−∂∂t(∇×B){\displaystyle {\begin{aligned}\nabla \times (\nabla \times {\mathbf {E} })&=\nabla \times
-{\frac {\partial {\mathbf {B} }}{\partial t}}\\&=-{\frac {\partial }{\partial t}}(\nabla \times {\mathbf {B} })\end{aligned}}} Note that partial derivatives commute with each other, given well-behaved functions. , Using the BAC-CAB identity ∇×(∇×E)=∇(∇⋅E)−∇2E{\displaystyle \nabla \times (\nabla \times {\mathbf {E} })=\nabla (\nabla \cdot {\mathbf {E} })-\nabla ^{2}{\mathbf {E} }} on the left side and recognizing that ∇⋅E=0,{\displaystyle \nabla \cdot {\mathbf {E} }=0,} ∇(∇⋅E)−∇2E=−μ0ϵ0∂2E∂t2∇2E=μ0ϵ0∂2E∂t2.{\displaystyle {\begin{aligned}\nabla (\nabla \cdot {\mathbf {E} })-\nabla ^{2}{\mathbf {E} }&=-\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {E} }}{\partial t^{2}}}\\\nabla ^{2}{\mathbf {E} }&=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {E} }}{\partial t^{2}}}.\end{aligned}}} The above equation is the wave equation in three dimensions. , ∂2E∂x2=μ0ϵ0∂2E∂t2.{\displaystyle {\frac {\partial ^{2}E}{\partial x^{2}}}=\mu _{0}\epsilon _{0}{\frac {\partial ^{2}E}{\partial t^{2}}}.} The general solution to this equation is f(x−vt)+g(x+vt),{\displaystyle f(x-vt)+g(x+vt),} where v{\displaystyle v} is the velocity and λ{\displaystyle \lambda } is the wavelength.
Here, f{\displaystyle f} and g{\displaystyle g} are two arbitrary functions that describe a wave propagating in the positive and negative directions, respectively.
Since this is quite general, we can opt for the most common solution of just a sinusoidal function traveling in the direction of propagation.
So we can write the solution as E=E0sin(2πλ(x−vt)),{\displaystyle E=E_{0}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right),} where E0{\displaystyle E_{0}} is the amplitude of the electric field (this quantity will cancel out later). , ∂2E∂x2=−E0(2πλ)2sin(2πλ(x−vt))∂2E∂t2=−E0(2πvλ)2sin(2πλ(x−vt)){\displaystyle {\begin{aligned}{\frac {\partial ^{2}E}{\partial x^{2}}}&=-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\\{\frac {\partial ^{2}E}{\partial t^{2}}}&=-E_{0}\left({\frac {2\pi v}{\lambda }}\right)^{2}\sin \left({\frac {2\pi }{\lambda }}(x-vt)\right)\end{aligned}}} , Note that the sin{\displaystyle \sin } expressions cancel out. −E0(2πλ)2=μ0ϵ01=μ0ϵ0v2{\displaystyle {\begin{aligned}-E_{0}\left({\frac {2\pi }{\lambda }}\right)^{2}&=\mu _{0}\epsilon _{0}\left\\1&=\mu _{0}\epsilon _{0}v^{2}\end{aligned}}} , v=1μ0ϵ0≈3×108 m s−1.{\displaystyle v={\sqrt {\frac {1}{\mu _{0}\epsilon _{0}}}}\approx 3\times 10^{8}{\text{ m s}}^{-1}.} The expression on the right happens to equal the speed of light.
Therefore, light does not only travel at the speed of electromagnetic waves, it is an electromagnetic wave.
About the Author
Jennifer Sanchez
A passionate writer with expertise in cooking topics. Loves sharing practical knowledge.
Rate This Guide
How helpful was this guide? Click to rate: