How to Find the Determinant of a 2x2 Matrix

Consider the matrix below., Multiply the upper-left entry by the lower-right entry., Multiply the upper-right entry by the lower-left entry., Subtract the number you just got from the first product., Consider the matrix below., Multiply the...

8 Steps 1 min read Medium

Step-by-Step Guide

  1. Step 1: Consider the matrix below.

    A=(abcd){\displaystyle A=\left({\begin{matrix}a&b\\c&d\end{matrix}}\right)}
  2. Step 2: Multiply the upper-left entry by the lower-right entry.

    ad{\displaystyle ad} , bc{\displaystyle bc} , detA=ad−bc{\displaystyle \det A=ad-bc} The formula above is the determinant of a general 2x2 matrix.

    It is highly useful to memorize. , B=(98−76){\displaystyle B=\left({\begin{matrix}9&8\\-7&6\end{matrix}}\right)} , (9)(6)=54{\displaystyle (9)(6)=54} , (−7)(8)=−56{\displaystyle (-7)(8)=-56} , detB=54−(−56)=110{\displaystyle \det B=54-(-56)=110}
  3. Step 3: Multiply the upper-right entry by the lower-left entry.

  4. Step 4: Subtract the number you just got from the first product.

  5. Step 5: Consider the matrix below.

  6. Step 6: Multiply the upper-left entry by the lower-right entry.

  7. Step 7: Multiply the lower-left entry by the upper-right entry.

  8. Step 8: Subtract the number you just got from the first product.

Detailed Guide

A=(abcd){\displaystyle A=\left({\begin{matrix}a&b\\c&d\end{matrix}}\right)}

ad{\displaystyle ad} , bc{\displaystyle bc} , detA=ad−bc{\displaystyle \det A=ad-bc} The formula above is the determinant of a general 2x2 matrix.

It is highly useful to memorize. , B=(98−76){\displaystyle B=\left({\begin{matrix}9&8\\-7&6\end{matrix}}\right)} , (9)(6)=54{\displaystyle (9)(6)=54} , (−7)(8)=−56{\displaystyle (-7)(8)=-56} , detB=54−(−56)=110{\displaystyle \det B=54-(-56)=110}

About the Author

E

Emily Jimenez

Professional writer focused on creating easy-to-follow home improvement tutorials.

68 articles
View all articles

Rate This Guide

--
Loading...
5
0
4
0
3
0
2
0
1
0

How helpful was this guide? Click to rate: