How to Find the Determinant of a 2x2 Matrix
Consider the matrix below., Multiply the upper-left entry by the lower-right entry., Multiply the upper-right entry by the lower-left entry., Subtract the number you just got from the first product., Consider the matrix below., Multiply the...
Step-by-Step Guide
-
Step 1: Consider the matrix below.
A=(abcd){\displaystyle A=\left({\begin{matrix}a&b\\c&d\end{matrix}}\right)} -
Step 2: Multiply the upper-left entry by the lower-right entry.
ad{\displaystyle ad} , bc{\displaystyle bc} , detA=ad−bc{\displaystyle \det A=ad-bc} The formula above is the determinant of a general 2x2 matrix.
It is highly useful to memorize. , B=(98−76){\displaystyle B=\left({\begin{matrix}9&8\\-7&6\end{matrix}}\right)} , (9)(6)=54{\displaystyle (9)(6)=54} , (−7)(8)=−56{\displaystyle (-7)(8)=-56} , detB=54−(−56)=110{\displaystyle \det B=54-(-56)=110} -
Step 3: Multiply the upper-right entry by the lower-left entry.
-
Step 4: Subtract the number you just got from the first product.
-
Step 5: Consider the matrix below.
-
Step 6: Multiply the upper-left entry by the lower-right entry.
-
Step 7: Multiply the lower-left entry by the upper-right entry.
-
Step 8: Subtract the number you just got from the first product.
Detailed Guide
A=(abcd){\displaystyle A=\left({\begin{matrix}a&b\\c&d\end{matrix}}\right)}
ad{\displaystyle ad} , bc{\displaystyle bc} , detA=ad−bc{\displaystyle \det A=ad-bc} The formula above is the determinant of a general 2x2 matrix.
It is highly useful to memorize. , B=(98−76){\displaystyle B=\left({\begin{matrix}9&8\\-7&6\end{matrix}}\right)} , (9)(6)=54{\displaystyle (9)(6)=54} , (−7)(8)=−56{\displaystyle (-7)(8)=-56} , detB=54−(−56)=110{\displaystyle \det B=54-(-56)=110}
About the Author
Emily Jimenez
Professional writer focused on creating easy-to-follow home improvement tutorials.
Rate This Guide
How helpful was this guide? Click to rate: