How to Find the Surface Area and Volume of a Cube
Use the formula S=6a2,{\displaystyle S=6a^{2},} where a{\displaystyle a} is the length of any edge of the cube., For the lateral surface area, count only the four sides of the cube, not the top and bottom surfaces.
Step-by-Step Guide
-
Step 1: Use the formula S=6a2
Then a2{\displaystyle a^{2}} is the area of any surface.
For example, let a=4 cm.{\displaystyle a=4{\rm {\ cm}}.} Then, S=6a2=6(4 cm)2=6(16 cm2)=96 cm2.{\displaystyle {\begin{aligned}S&=6a^{2}\\&=6(4{\rm {\ cm}})^{2}\\&=6(16{\rm {\ cm^{2}}})\\&=96{\rm {\ cm^{2}}}.\end{aligned}}} -
Step 2: {\displaystyle S=6a^{2}
Then, SL=4a2.{\displaystyle S_{L}=4a^{2}.} For example, let a=3 cm.{\displaystyle a=3{\rm {\ cm}}.} The lateral area is then SL=4a2=4(3 cm)2=4(9 cm2=36 cm2.{\displaystyle {\begin{aligned}S_{L}&=4a^{2}\\&=4(3{\rm {\ cm}})^{2}\\&=4(9{\rm {\ cm^{2}}}\\&=36{\rm {\ cm^{2}}}.\end{aligned}}} -
Step 3: } where a{\displaystyle a} is the length of any edge of the cube.
-
Step 4: For the lateral surface area
-
Step 5: count only the four sides of the cube
-
Step 6: not the top and bottom surfaces.
Detailed Guide
Then a2{\displaystyle a^{2}} is the area of any surface.
For example, let a=4 cm.{\displaystyle a=4{\rm {\ cm}}.} Then, S=6a2=6(4 cm)2=6(16 cm2)=96 cm2.{\displaystyle {\begin{aligned}S&=6a^{2}\\&=6(4{\rm {\ cm}})^{2}\\&=6(16{\rm {\ cm^{2}}})\\&=96{\rm {\ cm^{2}}}.\end{aligned}}}
Then, SL=4a2.{\displaystyle S_{L}=4a^{2}.} For example, let a=3 cm.{\displaystyle a=3{\rm {\ cm}}.} The lateral area is then SL=4a2=4(3 cm)2=4(9 cm2=36 cm2.{\displaystyle {\begin{aligned}S_{L}&=4a^{2}\\&=4(3{\rm {\ cm}})^{2}\\&=4(9{\rm {\ cm^{2}}}\\&=36{\rm {\ cm^{2}}}.\end{aligned}}}
About the Author
Sara Brown
Enthusiastic about teaching DIY projects techniques through clear, step-by-step guides.
Rate This Guide
How helpful was this guide? Click to rate: