How to Integrate by Parts when One Function Is a Polynomial

Evaluate the integral below., Choose u=x2{\displaystyle u=x^{2}} and dv=sin⁡xdx{\displaystyle {\mathrm {d} }v=\sin x{\mathrm {d} }x}., Choose u=2x{\displaystyle u=2x} and dv=cos⁡xdx{\displaystyle {\mathrm {d} }v=\cos x{\mathrm {d} }x}., Evaluate the...

4 Steps 2 min read Medium

Step-by-Step Guide

  1. Step 1: Evaluate the integral below.

    The integrand is a product of two functions: x2{\displaystyle x^{2}} and sin⁡x.{\displaystyle \sin x.} ∫x2sin⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x}
  2. Step 2: Choose u=x2{\displaystyle u=x^{2}} and dv=sin⁡xdx{\displaystyle {\mathrm {d} }v=\sin x{\mathrm {d} }x}.

    Differentiate u{\displaystyle u} to find du=2xdx{\displaystyle {\mathrm {d} }u=2x{\mathrm {d} }x} and integrate dv{\displaystyle {\mathrm {d} }v} to get v=−cos⁡x.{\displaystyle v=-\cos x.} We can drop the constant of integration from finding v{\displaystyle v} because it will eventually drop out in the end.

    Then we just plug all of these into the formula. ∫x2sin⁡xdx=−x2cos⁡x+∫2xcos⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+\int 2x\cos x{\mathrm {d} }x} Notice that the second integral is positive because of the −cos⁡x.{\displaystyle
    -\cos x.} , Notice that we need to use integration by parts on the second integral.

    So we will have to choose a new u{\displaystyle u} and dv.{\displaystyle {\mathrm {d} }v.} We then find that du=2dx{\displaystyle {\mathrm {d} }u=2{\mathrm {d} }x} and v=sin⁡x.{\displaystyle v=\sin x.} Plug these into the formula.

    Make sure to keep track that these new variables apply only to the second integral. ∫x2sin⁡xdx=−x2cos⁡x+2xsin⁡x−∫2sin⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x-\int 2\sin x{\mathrm {d} }x} We now see that the integral on the right is something that we can directly evaluate. , The antiderivative of sin⁡x{\displaystyle \sin x} is −cos⁡x.{\displaystyle
    -\cos x.} Make sure to add the constant of integration C.{\displaystyle C.} ∫x2sin⁡xdx=−x2cos⁡x+2xsin⁡x+2cos⁡x+C{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x+2\cos x+C}
  3. Step 3: Choose u=2x{\displaystyle u=2x} and dv=cos⁡xdx{\displaystyle {\mathrm {d} }v=\cos x{\mathrm {d} }x}.

  4. Step 4: Evaluate the integral on the right.

Detailed Guide

The integrand is a product of two functions: x2{\displaystyle x^{2}} and sin⁡x.{\displaystyle \sin x.} ∫x2sin⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x}

Differentiate u{\displaystyle u} to find du=2xdx{\displaystyle {\mathrm {d} }u=2x{\mathrm {d} }x} and integrate dv{\displaystyle {\mathrm {d} }v} to get v=−cos⁡x.{\displaystyle v=-\cos x.} We can drop the constant of integration from finding v{\displaystyle v} because it will eventually drop out in the end.

Then we just plug all of these into the formula. ∫x2sin⁡xdx=−x2cos⁡x+∫2xcos⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+\int 2x\cos x{\mathrm {d} }x} Notice that the second integral is positive because of the −cos⁡x.{\displaystyle
-\cos x.} , Notice that we need to use integration by parts on the second integral.

So we will have to choose a new u{\displaystyle u} and dv.{\displaystyle {\mathrm {d} }v.} We then find that du=2dx{\displaystyle {\mathrm {d} }u=2{\mathrm {d} }x} and v=sin⁡x.{\displaystyle v=\sin x.} Plug these into the formula.

Make sure to keep track that these new variables apply only to the second integral. ∫x2sin⁡xdx=−x2cos⁡x+2xsin⁡x−∫2sin⁡xdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x-\int 2\sin x{\mathrm {d} }x} We now see that the integral on the right is something that we can directly evaluate. , The antiderivative of sin⁡x{\displaystyle \sin x} is −cos⁡x.{\displaystyle
-\cos x.} Make sure to add the constant of integration C.{\displaystyle C.} ∫x2sin⁡xdx=−x2cos⁡x+2xsin⁡x+2cos⁡x+C{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x+2\cos x+C}

About the Author

I

Isabella Ward

Dedicated to helping readers learn new skills in crafts and beyond.

29 articles
View all articles

Rate This Guide

--
Loading...
5
0
4
0
3
0
2
0
1
0

How helpful was this guide? Click to rate: