How to Integrate the Natural Logarithm
Recall the formula for integration by parts., Identify u and dv., Differentiate u and integrate dv., Substitute., Evaluate the second integral to reach the solution.
Step-by-Step Guide
-
Step 1: Recall the formula for integration by parts.
This formula is related to the product rule of derivatives. ∫udv=uv−∫vdu{\displaystyle \int u{\mathrm {d} }v=uv-\int v{\mathrm {d} }u} -
Step 2: Identify u and dv.
Let u=lnx{\displaystyle u=\ln x} and dv=dx.{\displaystyle {\mathrm {d} }v={\mathrm {d} }x.} , du=1xdx,v=x{\displaystyle {\mathrm {d} }u={\frac {1}{x}}{\mathrm {d} }x,v=x} , ∫lnxdx=xlnx−∫x1xdx{\displaystyle \int \ln x{\mathrm {d} }x=x\ln x-\int x{\frac {1}{x}}{\mathrm {d} }x} , ∫lnxdx=xlnx−x+C{\displaystyle \int \ln x{\mathrm {d} }x=x\ln x-x+C} Remember that integrating adds a constant C,{\displaystyle C,} since the derivative of a constant is zero. -
Step 3: Differentiate u and integrate dv.
-
Step 4: Substitute.
-
Step 5: Evaluate the second integral to reach the solution.
Detailed Guide
This formula is related to the product rule of derivatives. ∫udv=uv−∫vdu{\displaystyle \int u{\mathrm {d} }v=uv-\int v{\mathrm {d} }u}
Let u=lnx{\displaystyle u=\ln x} and dv=dx.{\displaystyle {\mathrm {d} }v={\mathrm {d} }x.} , du=1xdx,v=x{\displaystyle {\mathrm {d} }u={\frac {1}{x}}{\mathrm {d} }x,v=x} , ∫lnxdx=xlnx−∫x1xdx{\displaystyle \int \ln x{\mathrm {d} }x=x\ln x-\int x{\frac {1}{x}}{\mathrm {d} }x} , ∫lnxdx=xlnx−x+C{\displaystyle \int \ln x{\mathrm {d} }x=x\ln x-x+C} Remember that integrating adds a constant C,{\displaystyle C,} since the derivative of a constant is zero.
About the Author
Alexis Scott
Creates helpful guides on cooking to inspire and educate readers.
Rate This Guide
How helpful was this guide? Click to rate: