How to Write Maxwell's Equations in Terms of Potentials
Begin with Maxwell's equations., Define the magnetic potential., Rewrite Faraday's Law in terms of the magnetic potential., Rewrite Gauss' Law in terms of potentials., Rewrite the Ampere-Maxwell Law in terms of potentials., Revisit the definitions...
Step-by-Step Guide
-
Step 1: Begin with Maxwell's equations.
Below, ϵ0{\displaystyle \epsilon _{0}} and μ0{\displaystyle \mu _{0}} are the electric and magnetic constants, respectively (we are working in SI units). ∇⋅E=ρϵ0∇⋅B=0∇×E=−∂B∂t∇×B=μ0J+μ0ϵ0∂E∂t{\displaystyle {\begin{aligned}\nabla \cdot {\mathbf {E} }&={\frac {\rho }{\epsilon _{0}}}\\\nabla \cdot {\mathbf {B} }&=0\\\nabla \times {\mathbf {E} }&=-{\frac {\partial {\mathbf {B} }}{\partial t}}\\\nabla \times {\mathbf {B} }&=\mu _{0}{\mathbf {J} }+\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E} }}{\partial t}}\end{aligned}}} -
Step 2: Define the magnetic potential.
From Gauss' Law of Magnetism, we see that magnetic fields are divergenceless via ∇⋅B=0.{\displaystyle \nabla \cdot {\mathbf {B} }=0.} In vector calculus, a theorem is that the divergence of a curl is always zero.
Therefore, we can rewrite B{\displaystyle {\mathbf {B} }} in terms of a magnetic potential A.{\displaystyle {\mathbf {A} }.} B=∇×A{\displaystyle {\mathbf {B} }=\nabla \times {\mathbf {A} }} From here, we see that magnetic potential is a vector potential.
This definition automatically satisfies Gauss' Law of Magnetism through the aforementioned vector identity ∇⋅(∇×F)=0.{\displaystyle \nabla \cdot (\nabla \times {\mathbf {F} })=0.} , Recall back in electrostatics that E{\displaystyle {\mathbf {E} }} was a conservative field (i.e. ∇×E=0{\displaystyle \nabla \times {\mathbf {E} }=0}), which allowed us to write it in terms of a scalar potential E=−∇ϕ.{\displaystyle {\mathbf {E} }=-\nabla \phi .} In electrodynamics, E{\displaystyle {\mathbf {E} }} is no longer conservative, due to the presence of a changing B{\displaystyle {\mathbf {B} }} field induced by moving charged particles.
However, substituting B=∇×A{\displaystyle {\mathbf {B} }=\nabla \times {\mathbf {A} }} into Faraday's Law returns an equation which we can take the scalar gradient of.
By doing so, our potential definition automatically satisfies another of Maxwell's equations. ∇×E=−∂∂t(∇×A)∇×E=∇×−∂A∂t∇×(E+∂A∂t)=0{\displaystyle {\begin{aligned}\nabla &\times {\mathbf {E} }=-{\frac {\partial }{\partial t}}(\nabla \times {\mathbf {A} })\\\nabla &\times {\mathbf {E} }=\nabla \times
-{\frac {\partial {\mathbf {A} }}{\partial t}}\\\nabla &\times \left({\mathbf {E} }+{\frac {\partial {\mathbf {A} }}{\partial t}}\right)=0\end{aligned}}} Now, we can write the quantity in parentheses in terms of a scalar potential.
E+∂A∂t=−∇ϕ{\displaystyle {\mathbf {E} }+{\frac {\partial {\mathbf {A} }}{\partial t}}=-\nabla \phi } Solve for E{\displaystyle {\mathbf {E} }} to obtain the electric field in terms of potentials.
E=−∇ϕ−∂A∂t{\displaystyle {\mathbf {E} }=-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}} , Now that we are done with the two homogeneous equations, we can work our way with the other two. ∇⋅(−∇ϕ−∂A∂t)=ρϵ0−∇2ϕ−∂∂t(∇⋅A)=ρϵ0{\displaystyle {\begin{aligned}\nabla \cdot \left(-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}\right)&={\frac {\rho }{\epsilon _{0}}}\\-\nabla ^{2}\phi
-{\frac {\partial }{\partial t}}(\nabla \cdot {\mathbf {A} })&={\frac {\rho }{\epsilon _{0}}}\end{aligned}}} , ∇×(∇×A)=μ0J+μ0ϵ0∂∂t(−∇ϕ−∂A∂t){\displaystyle \nabla \times (\nabla \times {\mathbf {A} })=\mu _{0}{\mathbf {J} }+\mu _{0}\epsilon _{0}{\frac {\partial }{\partial t}}\left(-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}\right)} Make use of the BAC-CAB identity.
For the vector calculus form, it reads as ∇×(∇×F)=∇(∇⋅F)−∇2F.{\displaystyle \nabla \times (\nabla \times {\mathbf {F} })=\nabla (\nabla \cdot {\mathbf {F} })-\nabla ^{2}{\mathbf {F} }.} ∇(∇⋅A)−∇2A=μ0J−μ0ϵ0∇(∂ϕ∂t)−μ0ϵ0∂2A∂t2{\displaystyle \nabla (\nabla \cdot {\mathbf {A} })-\nabla ^{2}{\mathbf {A} }=\mu _{0}{\mathbf {J} }-\mu _{0}\epsilon _{0}\nabla \left({\frac {\partial \phi }{\partial t}}\right)-\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}} Rearrange so that the Laplacian and the gradient terms are together. (μ0ϵ0∂2A∂t2−∇2A)+∇(∇⋅A+μ0ϵ0∂ϕ∂t)=μ0J{\displaystyle \left(\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }\right)+\nabla \left(\nabla \cdot {\mathbf {A} }+\mu _{0}\epsilon _{0}{\frac {\partial \phi }{\partial t}}\right)=\mu _{0}{\mathbf {J} }} Through rewriting Gauss' Law and the Ampere-Maxwell Law in terms of potentials, we have reduced Maxwell's equations from four equations to two.
Furthermore, we have reduced the number of components to just four
- the scalar potential and the three components of the vector potential.
However, no one ever encounters Maxwell's equations written like this. , It turns out that A{\displaystyle {\mathbf {A} }} and ϕ{\displaystyle \phi } are not uniquely defined, since an appropriate change in these quantities results in the same E{\displaystyle {\mathbf {E} }} and B{\displaystyle {\mathbf {B} }} fields.
These changes in the potentials are called gauge transformations.
In this section, we outline two of the most common gauge transformations that greatly simplify Maxwell's equations. , Let's label the changes as α{\displaystyle {\boldsymbol {\alpha }}} and β.{\displaystyle \beta .} A→A+αϕ→ϕ+β{\displaystyle {\begin{aligned}{\mathbf {A} }&\to {\mathbf {A} }+{\boldsymbol {\alpha }}\\\phi &\to \phi +\beta \end{aligned}}} If the vector potentials give the same B,{\displaystyle {\mathbf {B} },} then ∇×α=0.{\displaystyle \nabla \times {\boldsymbol {\alpha }}=0.} Then, we can write α{\displaystyle {\boldsymbol {\alpha }}} in terms of a scalar χ.{\displaystyle \chi .} α=∇χ{\displaystyle {\boldsymbol {\alpha }}=\nabla \chi } Similarly, if both potentials give the same E,{\displaystyle {\mathbf {E} },} then ∇β+∂α∂t=0.{\displaystyle \nabla \beta +{\frac {\partial {\boldsymbol {\alpha }}}{\partial t}}=0.} ∇(β+∂χ∂t)=0{\displaystyle \nabla \left(\beta +{\frac {\partial \chi }{\partial t}}\right)=0} Solving for β{\displaystyle \beta } by integrating both sides adds a constant that depends on time.
However, this constant does not affect the gradient of χ,{\displaystyle \chi ,} so we can neglect it. β=−∂χ∂t{\displaystyle \beta =-{\frac {\partial \chi }{\partial t}}} , By manipulating these transformations in an appropriate manner, we can change the divergence of A{\displaystyle {\mathbf {A} }} to simplify Maxwell's equations by choosing a χ{\displaystyle \chi } that satisfies the conditions we want.
A→A+∇χϕ→ϕ−∂χ∂t{\displaystyle {\begin{aligned}{\mathbf {A} }&\to {\mathbf {A} }+\nabla \chi \\\phi &\to \phi
-{\frac {\partial \chi }{\partial t}}\end{aligned}}} , Set ∇⋅A=0.{\displaystyle \nabla \cdot {\mathbf {A} }=0.} ∇2ϕ=−ρϵ0{\displaystyle \nabla ^{2}\phi =-{\frac {\rho }{\epsilon _{0}}}} (μ0ϵ0∂2A∂t2−∇2A)+μ0ϵ0∇(∂ϕ∂t)=μ0J{\displaystyle \left(\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }\right)+\mu _{0}\epsilon _{0}\nabla \left({\frac {\partial \phi }{\partial t}}\right)=\mu _{0}{\mathbf {J} }} This is the Coulomb gauge, which reduces the scalar potential equation to Poisson's equation, but results in a rather complicated vector potential equation. , Set ∇⋅A=−μ0ϵ0∂ϕ∂t.{\displaystyle \nabla \cdot {\mathbf {A} }=-\mu _{0}\epsilon _{0}{\frac {\partial \phi }{\partial t}}.} μ0ϵ0∂2ϕ∂t2−∇2ϕ=ρϵ0{\displaystyle \mu _{0}\epsilon _{0}{\frac {\partial ^{2}\phi }{\partial t^{2}}}-\nabla ^{2}\phi ={\frac {\rho }{\epsilon _{0}}}} μ0ϵ0∂2A∂t2−∇2A=μ0J{\displaystyle \mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }=\mu _{0}{\mathbf {J} }} This is the Lorenz gauge, which results in manifest Lorentz covariance.
The two potential equations are now in the same form of the inhomogeneous wave equation. -
Step 3: Rewrite Faraday's Law in terms of the magnetic potential.
-
Step 4: Rewrite Gauss' Law in terms of potentials.
-
Step 5: Rewrite the Ampere-Maxwell Law in terms of potentials.
-
Step 6: Revisit the definitions of the scalar and vector potentials.
-
Step 7: Account for gauge freedom.
-
Step 8: Rewrite the gauge freedoms in terms of χ{\displaystyle \chi }.
-
Step 9: Obtain the Coulomb gauge.
-
Step 10: Obtain the Lorenz gauge.
Detailed Guide
Below, ϵ0{\displaystyle \epsilon _{0}} and μ0{\displaystyle \mu _{0}} are the electric and magnetic constants, respectively (we are working in SI units). ∇⋅E=ρϵ0∇⋅B=0∇×E=−∂B∂t∇×B=μ0J+μ0ϵ0∂E∂t{\displaystyle {\begin{aligned}\nabla \cdot {\mathbf {E} }&={\frac {\rho }{\epsilon _{0}}}\\\nabla \cdot {\mathbf {B} }&=0\\\nabla \times {\mathbf {E} }&=-{\frac {\partial {\mathbf {B} }}{\partial t}}\\\nabla \times {\mathbf {B} }&=\mu _{0}{\mathbf {J} }+\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E} }}{\partial t}}\end{aligned}}}
From Gauss' Law of Magnetism, we see that magnetic fields are divergenceless via ∇⋅B=0.{\displaystyle \nabla \cdot {\mathbf {B} }=0.} In vector calculus, a theorem is that the divergence of a curl is always zero.
Therefore, we can rewrite B{\displaystyle {\mathbf {B} }} in terms of a magnetic potential A.{\displaystyle {\mathbf {A} }.} B=∇×A{\displaystyle {\mathbf {B} }=\nabla \times {\mathbf {A} }} From here, we see that magnetic potential is a vector potential.
This definition automatically satisfies Gauss' Law of Magnetism through the aforementioned vector identity ∇⋅(∇×F)=0.{\displaystyle \nabla \cdot (\nabla \times {\mathbf {F} })=0.} , Recall back in electrostatics that E{\displaystyle {\mathbf {E} }} was a conservative field (i.e. ∇×E=0{\displaystyle \nabla \times {\mathbf {E} }=0}), which allowed us to write it in terms of a scalar potential E=−∇ϕ.{\displaystyle {\mathbf {E} }=-\nabla \phi .} In electrodynamics, E{\displaystyle {\mathbf {E} }} is no longer conservative, due to the presence of a changing B{\displaystyle {\mathbf {B} }} field induced by moving charged particles.
However, substituting B=∇×A{\displaystyle {\mathbf {B} }=\nabla \times {\mathbf {A} }} into Faraday's Law returns an equation which we can take the scalar gradient of.
By doing so, our potential definition automatically satisfies another of Maxwell's equations. ∇×E=−∂∂t(∇×A)∇×E=∇×−∂A∂t∇×(E+∂A∂t)=0{\displaystyle {\begin{aligned}\nabla &\times {\mathbf {E} }=-{\frac {\partial }{\partial t}}(\nabla \times {\mathbf {A} })\\\nabla &\times {\mathbf {E} }=\nabla \times
-{\frac {\partial {\mathbf {A} }}{\partial t}}\\\nabla &\times \left({\mathbf {E} }+{\frac {\partial {\mathbf {A} }}{\partial t}}\right)=0\end{aligned}}} Now, we can write the quantity in parentheses in terms of a scalar potential.
E+∂A∂t=−∇ϕ{\displaystyle {\mathbf {E} }+{\frac {\partial {\mathbf {A} }}{\partial t}}=-\nabla \phi } Solve for E{\displaystyle {\mathbf {E} }} to obtain the electric field in terms of potentials.
E=−∇ϕ−∂A∂t{\displaystyle {\mathbf {E} }=-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}} , Now that we are done with the two homogeneous equations, we can work our way with the other two. ∇⋅(−∇ϕ−∂A∂t)=ρϵ0−∇2ϕ−∂∂t(∇⋅A)=ρϵ0{\displaystyle {\begin{aligned}\nabla \cdot \left(-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}\right)&={\frac {\rho }{\epsilon _{0}}}\\-\nabla ^{2}\phi
-{\frac {\partial }{\partial t}}(\nabla \cdot {\mathbf {A} })&={\frac {\rho }{\epsilon _{0}}}\end{aligned}}} , ∇×(∇×A)=μ0J+μ0ϵ0∂∂t(−∇ϕ−∂A∂t){\displaystyle \nabla \times (\nabla \times {\mathbf {A} })=\mu _{0}{\mathbf {J} }+\mu _{0}\epsilon _{0}{\frac {\partial }{\partial t}}\left(-\nabla \phi
-{\frac {\partial {\mathbf {A} }}{\partial t}}\right)} Make use of the BAC-CAB identity.
For the vector calculus form, it reads as ∇×(∇×F)=∇(∇⋅F)−∇2F.{\displaystyle \nabla \times (\nabla \times {\mathbf {F} })=\nabla (\nabla \cdot {\mathbf {F} })-\nabla ^{2}{\mathbf {F} }.} ∇(∇⋅A)−∇2A=μ0J−μ0ϵ0∇(∂ϕ∂t)−μ0ϵ0∂2A∂t2{\displaystyle \nabla (\nabla \cdot {\mathbf {A} })-\nabla ^{2}{\mathbf {A} }=\mu _{0}{\mathbf {J} }-\mu _{0}\epsilon _{0}\nabla \left({\frac {\partial \phi }{\partial t}}\right)-\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}} Rearrange so that the Laplacian and the gradient terms are together. (μ0ϵ0∂2A∂t2−∇2A)+∇(∇⋅A+μ0ϵ0∂ϕ∂t)=μ0J{\displaystyle \left(\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }\right)+\nabla \left(\nabla \cdot {\mathbf {A} }+\mu _{0}\epsilon _{0}{\frac {\partial \phi }{\partial t}}\right)=\mu _{0}{\mathbf {J} }} Through rewriting Gauss' Law and the Ampere-Maxwell Law in terms of potentials, we have reduced Maxwell's equations from four equations to two.
Furthermore, we have reduced the number of components to just four
- the scalar potential and the three components of the vector potential.
However, no one ever encounters Maxwell's equations written like this. , It turns out that A{\displaystyle {\mathbf {A} }} and ϕ{\displaystyle \phi } are not uniquely defined, since an appropriate change in these quantities results in the same E{\displaystyle {\mathbf {E} }} and B{\displaystyle {\mathbf {B} }} fields.
These changes in the potentials are called gauge transformations.
In this section, we outline two of the most common gauge transformations that greatly simplify Maxwell's equations. , Let's label the changes as α{\displaystyle {\boldsymbol {\alpha }}} and β.{\displaystyle \beta .} A→A+αϕ→ϕ+β{\displaystyle {\begin{aligned}{\mathbf {A} }&\to {\mathbf {A} }+{\boldsymbol {\alpha }}\\\phi &\to \phi +\beta \end{aligned}}} If the vector potentials give the same B,{\displaystyle {\mathbf {B} },} then ∇×α=0.{\displaystyle \nabla \times {\boldsymbol {\alpha }}=0.} Then, we can write α{\displaystyle {\boldsymbol {\alpha }}} in terms of a scalar χ.{\displaystyle \chi .} α=∇χ{\displaystyle {\boldsymbol {\alpha }}=\nabla \chi } Similarly, if both potentials give the same E,{\displaystyle {\mathbf {E} },} then ∇β+∂α∂t=0.{\displaystyle \nabla \beta +{\frac {\partial {\boldsymbol {\alpha }}}{\partial t}}=0.} ∇(β+∂χ∂t)=0{\displaystyle \nabla \left(\beta +{\frac {\partial \chi }{\partial t}}\right)=0} Solving for β{\displaystyle \beta } by integrating both sides adds a constant that depends on time.
However, this constant does not affect the gradient of χ,{\displaystyle \chi ,} so we can neglect it. β=−∂χ∂t{\displaystyle \beta =-{\frac {\partial \chi }{\partial t}}} , By manipulating these transformations in an appropriate manner, we can change the divergence of A{\displaystyle {\mathbf {A} }} to simplify Maxwell's equations by choosing a χ{\displaystyle \chi } that satisfies the conditions we want.
A→A+∇χϕ→ϕ−∂χ∂t{\displaystyle {\begin{aligned}{\mathbf {A} }&\to {\mathbf {A} }+\nabla \chi \\\phi &\to \phi
-{\frac {\partial \chi }{\partial t}}\end{aligned}}} , Set ∇⋅A=0.{\displaystyle \nabla \cdot {\mathbf {A} }=0.} ∇2ϕ=−ρϵ0{\displaystyle \nabla ^{2}\phi =-{\frac {\rho }{\epsilon _{0}}}} (μ0ϵ0∂2A∂t2−∇2A)+μ0ϵ0∇(∂ϕ∂t)=μ0J{\displaystyle \left(\mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }\right)+\mu _{0}\epsilon _{0}\nabla \left({\frac {\partial \phi }{\partial t}}\right)=\mu _{0}{\mathbf {J} }} This is the Coulomb gauge, which reduces the scalar potential equation to Poisson's equation, but results in a rather complicated vector potential equation. , Set ∇⋅A=−μ0ϵ0∂ϕ∂t.{\displaystyle \nabla \cdot {\mathbf {A} }=-\mu _{0}\epsilon _{0}{\frac {\partial \phi }{\partial t}}.} μ0ϵ0∂2ϕ∂t2−∇2ϕ=ρϵ0{\displaystyle \mu _{0}\epsilon _{0}{\frac {\partial ^{2}\phi }{\partial t^{2}}}-\nabla ^{2}\phi ={\frac {\rho }{\epsilon _{0}}}} μ0ϵ0∂2A∂t2−∇2A=μ0J{\displaystyle \mu _{0}\epsilon _{0}{\frac {\partial ^{2}{\mathbf {A} }}{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }=\mu _{0}{\mathbf {J} }} This is the Lorenz gauge, which results in manifest Lorentz covariance.
The two potential equations are now in the same form of the inhomogeneous wave equation.
About the Author
George Shaw
Creates helpful guides on practical skills to inspire and educate readers.
Rate This Guide
How helpful was this guide? Click to rate: